Homework 4

Wei Ye

2023-08-02

Question 9

Solve the following questions from the Discrete Math zyBook:

4.1.3 Which of the following are functions from \mathbb{R} to \mathbb{R} ? If f is a function, give its range.

(b)

$$f(x) = \frac{1}{(x^2 - 4)}$$

Solution. The function is not well-defined for x = 2 and x = -2.

(c)

$$f(x) = \sqrt{x^2}$$

Solution. The function is well-defined. And the range of the function is $\mathbb{R}^+ \cup \{0\}$.

4.1.5 Express the range of each function using roster notation.

- (b) Let $A = \{2, 3, 4, 5\}$. $f : A \to \mathbb{Z}$ such that $f(x) = x^2$ *Solution.* $\{4, 9, 16, 25\}$
- (d) $f: \{0,1\}^5 \to \mathbb{Z}$. For $x \in \{0,1\}^5$, f(x) is the number of 1's that occur in x. For example, f(01101) = 3, because there are three 1's in the string "01101".

Solution.

$$\{0, 1, 2, 3, 4, 5\}$$

(h) Let $A = \{1, 2, 3\}$ $f: A \times A \to \mathbb{Z} \times \mathbb{Z}$, where f(x, y) = (y, x).

Solution.

$$\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$$

(i) Let
$$A = \{1, 2, 3\}$$

 $f: A \times A \to \mathbb{Z} \times \mathbb{Z}$, where $f(x, y) = (x, y+1)$.

Solution.

$$\{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$$

(l) Let
$$A = \{1, 2, 3\}$$

 $f : P(A) \to P(A)$. For $X \subseteq A, f(X) = X - \{1\}$.
Solution.
 $\{\emptyset, \{2\}, \{3\}, \{2, 3\}\}$

Question 10

I Solve the following questions from the Discrete Math zyBook:

- 4.2.2 For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.
 - (c) h: Z → Z. h(x) = x³
 Solution. The function is one-to-one, but not onto.
 For example, there is no integer x such that h(x) = 5.
 - (g) $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, f(x, y) = (x + 1, 2y)Solution. The function is **one-to-one**, **but not onto**. For example, there is no integer pair (x, y) such that f(x, y)

For example, there is no integer pair (x, y) such that f(x, y) = (2, 3).

(k) $f: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+, f(x, y) = 2^x + y$

Solution. The function is **neither one-to-one nor onto**. For example, f(0,7) = 8 and f(3,0) = 8, f(0,7) = f(3,0), and there is no positive integer pair (x, y) such that f(x, y) = 1.

- 4.2.4 For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.
 - (b) $f: \{0,1\}^3 \to \{0,1\}^3$. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101and f(110) = 110.

Solution. The function is **neither one-to-one nor onto**. For example, f(001) = 101 and f(101) = 101, f(001) = f(101), and there is no input string $s \in \{0, 1\}^3$ such that f(s) = 001.

(c) $f: \{0,1\}^3 \to \{0,1\}^3$. The output of f is obtained by taking the input string and reversing the bits. For example f(011) = 110. Solution. The function is **both one-to-one and onto**.

(d) $f : \{0,1\}^3 \to \{0,1\}^4$. The output of f is obtained by taking the input string and adding an extra copy of the first bit to the end of the string. For example, f(100) = 1001.

Solution. The function is **one-to-one**, but not onto. For example, there is no input string $s \in \{0, 1\}^3$ such that f(s) = 1000.

- (g) Let A be defined to be the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ and let $B = \{1\}$. $f:P(A) \rightarrow P(A)$. For $X \subseteq A$, f(X) = X B. Recall that for a finite set A, P(A) denotes the power set of A which is the set of all subsets of A. Solution. The function is **neither one-to-one nor onto**. For example, $f(\{1, 2, 3\}) = \{2, 3\}$ and $f(\{2, 3\}) = \{2, 3\}$, $f(\{1, 2, 3\}) = f(\{2, 3\})$, and there is no set $S \in P(A)$ such
- II Give an example of a function from the set of integers to the set of positive integers that is :
 - a. one-to-one, but not onto.

that $f(S) = \{1\}.$

Solution.

$$f(x) = \begin{cases} 2x + 7, & \text{if } x \ge 0, \\ -2x, & \text{if } x < 0. \end{cases}$$

b. onto, but not one-to-one.

Solution.

$$f(x) = \begin{cases} x+1, & \text{if } x > 0, \\ -x+1, & \text{if } x \le 0 \end{cases}$$

c. one-to-one and onto.

Solution.

$$f(x) = \begin{cases} 2x+1 & \text{if } x \ge 0\\ -2x & \text{if } x < 0 \end{cases}$$

d. neither one-to-one nor onto

Solution.

$$f(x) = 5$$

Question 11

Solve the following questions from the Discrete Math zyBook:

- 4.3.2 For each of the following functions, indicate whether the function has a well-defined inverse. If the inverse is well-defined, give the input/output relationship of f^{-1} .
 - (c) $f : \mathbb{R} \to \mathbb{R}.f(x) = 2x + 3$

Solution. The function is both one-to-one and onto, thus it has a well-defined inverse.

$$f^{-1}(x) = \frac{x-3}{2}$$

(d) Let A be defined to be the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ $f: P(A) \rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ For $X \subseteq A, f(X) = |X|$. Recall that for a finite set A, P(A) denotes the power set of A which is the set of all subsets of A.

Solution. The function is not one-to-one as $f(\{1\}) = f(\{2\})$, thus it doesn't have a well-defined inverse.

(g) $f: \{0,1\}^3 \to \{0,1\}^3$. The output of f is obtained by taking the input string and reversing the bits. For example, f(011) = 110.

Solution. The function has a well-defined inverse $f^{-1} = f$. That is, the output of f^{-1} is obtained by taking the input string and reversing the bits.

(i) $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, f(x, y) = (x + 5, y - 2)$

Solution. The function has a well-defined inverse

$$f^{-1}(x,y) = (x-5,y+2)$$

4.4.8 The domain and target set of functions f, g, and h are Z. The functions are defined as:

- f(x) = 2x + 3
- g(x) = 5x + 7
- $h(x) = x^2 + 1$

Give an explicit formula for each function given below.

(c) $f \circ h$ Solution.

$$f \circ h(x) = 2x^2 + 5$$

(d) $h \circ f$

Solution.

$$h \circ f(x) = 4x^2 + 12x + 10$$

4.4.2 Consider three functions f, g, and h, whose domain and target are **Z**. Let

$$f(x) = x^2 \quad g(x) = 2^x \quad h(x) = \left|\frac{x}{5}\right|$$

(b) Evaluate $(f \circ h)(52)$

Solution.

$$(f \circ h)(52) = \left(\left\lceil \frac{52}{5} \right\rceil\right)^2 = 11^2 = 121$$

(c) Evaluate $(g \circ h \circ f)(4)$

Solution.

$$(g \circ h \circ f)(4) = (g \circ h)(16) = g(4) = 16$$

(d) Give a mathematical expression for $h \circ f$.

Solution.

$$h \circ f(x) = \left\lceil \frac{x^2}{5} \right\rceil$$

6

4.4.6 Define the following functions f, g, and h:

- f: {0,1}³ → {0,1}³. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110.
- $g: \{0,1\}^3 \to \{0,1\}^3$. The output of g is obtained by taking the input string and reversing the bits. For example, g(011) = 110.
- h: {0,1}³ → {0,1}³. The output of h is obtained by taking the input string x, and replacing the last bit with a copy of the first bit. For example, h(011) = 010.
- (c) What is $(h \circ f)(010)$?

Solution.

$$(h \circ f)(010) = h(110) = 111$$

(d) What is the range of $h \circ f$?

Solution. The range of f is {100, 101, 110, 111}. Thus the range of $h \circ f$ is {101, 111} \Box

(e) What is the range of $g \circ f$?

Solution. The range of f is {100, 101, 110, 111}. Thus the range of $g \circ f$ is {001, 101, 011, 111} \Box

Extra Question

4.4.4 Let $f: X \to Y$ and $g: Y \to Z$ be two functions.

(c) Is it possible that f is not one-to-one and $g \circ f$ is one-to-one? Justify your answer. If the answer is "yes", give a specific example for f and g.

Solution. No.

Since there exist x_1 and x_2 such that $f(x_1) = f(x_2)$, we have $(g \circ f)(x_1) = (g \circ f)(x_2)$, which means $g \circ f$ is not one-to-one. \Box

(d) Is it possible that g is not one-to-one and $g \circ f$ is one-to-one? Justify your answer. If the answer is "yes", give a specific example for f and g.

Solution. Yes.

The diagram below illustrates an example.

