Homework 11

Wei Ye

2023-09-18

Question 5

a. Use mathematical induction to prove that for any positive integer $n, 3$ divides $n^3 + 2n$ (leaving no remainder).

Proof. By induction on n .

Base case: $n = 1$. When $n = 1$, $1 + 2 = 3$, which can be divided by 3. **Inductive step:** Assume that when $n = k$, $k^3 + 2k$ can be divided by 3, which means that there exists an integer m such that $k^3 + 2k = 3m$.

Then for $k + 1$, we have to prove that $(k + 1)^3 + 2(k + 1)$ can be divided by 3.

$$
(k+1)3 + 2(k + 1)
$$

=k³ + 3k² + 3k + 1 + 2k + 2
= (k³ + 2k) + (3k² + 3k + 3)
= 3m + 3(k² + k + 1)
= 3(m + k² + k + 1)

As k and m are both integers, $m + k^2 + k + 1$ is also an integer, thus $(k+1)^3+2(k+1)$ can be divided by 3.

Therefore, for any positive integer n, 3 divides $n^3 + 2n$.

b. Use strong induction to prove that any positive integer $n (n \geq 2)$ can be written as a product of primes.

Proof. By induction on n .

Base case: $n = 2$. When $n = 2$, $2 = 1 \cdot 2$, 1 and 2 are prime numbers, thus it can be written as a product of primes.

Inductive step: Assume that for every integer between 2 and k , each can be written as a product of primes, which means that

$$
2 = 1 \cdot 2
$$

3 = 1 \cdot 3
4 = 2 \cdot 2
...
 $k = k_1 \cdot k_2 \cdots k_j$, where from k_1 , k_2 till k_j are all prime numbers

Then for $k + 1$, if $k + 1$ is a prime number, $k + 1 = 1 \cdot (k + 1)$; if $k + 1$ is not a prime number, let a and b be the two numbers that their product is $k + 1$, which is $k + 1 = a \cdot b$, where $a \ge 2$ and $b \ge 2$.

$$
k + 1 = a \cdot b
$$

$$
a = \frac{k + 1}{b}
$$

$$
b = \frac{k + 1}{a}
$$

As $a \geq 2$ and $b \geq 2$,

$$
\frac{k+1}{b} < k+1
$$
\n
$$
\frac{k+1}{b} \le k
$$
\n
$$
a \le k
$$

$$
\frac{k+1}{a} < k+1
$$
\n
$$
\frac{k+1}{a} \le k
$$
\n
$$
b \le k
$$

As we already assumed that for every integer between 2 and k , each can be written as a product of primes, and $2 \le a \le k$ and $2 \le b \le k$, which means that

 $a = a_1 \cdot a_2 \cdots a_m$, where from a_1 , a_2 till a_m are all primes. $b = b_1 \cdot b_2 \cdots b_n$, where from b_1 , b_2 till b_n are all primes.

Then

$$
k + 1 = a \cdot b
$$

= $(a_1 \cdot a_2 \cdots a_m)(b_1 \cdot b_2 \cdots b_m)$
= $a_1 \cdot a_2 \cdot b_1 \cdot b_2 \cdots a_m \cdot b_n$

Thus we can see that for $k + 1$, no matter it's a prime number or not, it can be a product of primes.

Therefore, for any positive integer $n (n \geq 2)$ can be written as a product of primes.

Question 6

7.4.1 Define $P(n)$ to be the assertion that:

$$
\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}
$$

(a) Verify that $P(3)$ is true.

Solution. When $n = 3$, the left of the equation is

$$
\sum_{j=1}^{n} j^2 = 1^2 + 2^2 + 3^2 = 14
$$

the right of the equation is

$$
\frac{n(n+1)(2n+1)}{6} = \frac{3 \cdot 4 \cdot 7}{6} = 14
$$

The left and right of the equation is equal, thus $P(3)$ is true. \Box

(b) Express $P(k)$.

Solution.

$$
\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}
$$

Solution.

$$
\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2k+3)}{6}
$$

(d) In an inductive proof that for every positive integer n , what must be proven in the base case?

Solution. For an inductive proof, the base case is $P(1)$, thus $P(1)$ must be proved to be true. \Box

(e) In an inductive proof that for every positive integer n , what must be proven in the inductive step?

 \Box

Solution. In the inductive step, we shall prove that

For all
$$
k \in \mathbb{Z}^+, P(k) \to P(k+1)
$$

(f) What would be the inductive hypothesis in the inductive step from your previous answer?

 \Box Solution. The inductive hypothesis is $P(k)$ is true.

(g) Prove by induction that for any positive integer n, the assertion is true.

Proof. By induction on n . **Base case:** $n = 1$. When $n = 1$,

$$
\sum_{j=1}^{1} = 1^{2} = 1
$$

$$
\frac{1 \cdot (1+1) \cdot (2 \cdot 1 + 1)}{6} =
$$

= 1

The left and right of the equation is equal, thus $P(1)$ is true.

Inductive step: Assume that for positive integer k , $P(k)$ is true, there we have

$$
1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}
$$

For $k + 1$, the left of the equation is

$$
1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2
$$

the right of the equation is

$$
\frac{(k+1)(k+2)(2k+3)}{6}
$$

Given $P(k)$ is true, the difference between the left and right of the equation in $P(k+1)$ is

$$
1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} - \frac{(k+1)(k+2)(2k+3)}{6}
$$

= $\frac{k(k+1)(2k+1)}{6} + (k+1)^{2} - \frac{(k+1)(k+2)(2k+3)}{6}$
= $(k+1)(\frac{2k^{2} + k}{6} + (k+1) - \frac{2k^{2} + 7k + 6}{6})$
= $(k+1)(k+1 - \frac{6k+6}{6})$
= 0

Thus the difference between the left and right of the equation is 0, which means that $P(k + 1)$ is true.

Therefore, for any positive integer n, the assertion is true.

 \Box

7.4.3 (c) Prove that for $n \geq 1$,

$$
\sum_{j=1}^{n} \frac{1}{j^2} \le 2 - \frac{1}{n}
$$

Proof. By induction on j . Let $P(n)$ be the assertion that

$$
\sum_{j=1}^n \frac{1}{j^2} \leq 2 - \frac{1}{n}
$$

Base case: $n = 1$. When $n = 1$, the left of $P(1)$ is

$$
\frac{1}{1^2} = 1
$$

the right of $P(1)$ is

$$
2 - \frac{1}{1} = 1
$$

As $1 \leq 1$, $P(1)$ is true.

Inductive step: Assume that when $n = k$, the assertion $P(k)$ is true, there we have 1 1 1 1

$$
\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} \le 2 - \frac{1}{k}
$$

When $n = k + 1$,

$$
\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{(k+1)^2}
$$

$$
\le 2 - \frac{1}{k} + \frac{1}{k(k+1)}
$$

$$
= 2 - \frac{1}{k+1}
$$

Thus, $P(k+1)$ is true.

Therefore for $n \geq 1$ the assertion is true.

7.5.1 (a) Prove that for any positive integer n, 4 evenly divides $3^{2n} - 1$.

Proof. By induction on n . Let $f(n) = 3^{2n} - 1$. **Base case:** $n = 1$. When $n = 1$, $f(1) = 3^2 - 1 = 8$, which can be evenly divided by 4, as the remainder is 0. **Inductive step:** Assume that when $n = k$, $f(k) = 3^{2k} - 1$ can be evenly divided by 4, which means that there exists an integer m such that $f(n) = 4m$. Then, when $n = k + 1$

$$
f(k + 1) = 3^{2(k+1)} - 1
$$

= 9 \cdot 3^{2k} - 9 + 8
= 9 \cdot (3^{2k} - 1) + 2 \cdot 4
= 9 \cdot f(k) + 2 \cdot 4
= 9 \cdot 4m + 2 \cdot 4
= 4(9m + 2)

As m is an integer, then $9m + 2$ is also an integer, which means that $f(k + 1)$ can be evenly divided by 4.

Therefore, for any positive integer n, 4 evenly divides $3^{2n} - 1$.