
Homework 19 - Fork()

Definition

The fork-and-join idea came up in the 1960s and later fork() became a system
call that first appeared in Version 6 AT&T UNIX in the 1970s. It causes creation
of a new process and is typically used in c or c++ programming languages. The
original is the parent process, and the newly created one its child.

fork() receives no argument and returns an integer. On success, the PID of the
child process is returned in the parent, and 0 is returned in the child. On failure,
-1 is returned in the parent, no child process is created.

#include <iostream>
#include <unistd.h>

using namespace std;

int main() {
cout << "current process" << " (pid: " << getpid() << ")" << endl;
int rc = fork();
if (rc < 0) {

cout << "fork() failed";
exit(1);

} else if (rc == 0) {
cout << "child process (pid: " << getpid() << ")" << endl;

} else {
cout << "parent process (pid: " << getpid() << ")" << endl;

}
return 0;

}

The code snippet above outputs:

current process (pid: 86612)
parent process (pid: 86612)
child process (pid: 86614)

Here it returns twice on success, because fork() returns pid of the created child
and returns 0 in the created child.

What it does in the OS

Calling fork() creates a child process. Child is an exact copy of the parent
process but the address space of child process differs from the parent. A technique
called ‘copy-on-write’ or ‘lazy copying’ is used, so that the actual copying of
stack, heap and registers is deferred until the child makes any changes to them
during the execution time.

1



The child process is an exact duplicate of the parent process except for the
following points:

• The child has its own unique process ID, and this PID does not match the
ID of any existing process group or session.

• The child’s parent process ID is the same as the parent’s process ID.

• The child does not inherit its parent’s memory locks.

• Process resource utilizations and CPU time counters are reset to zero in
the child.

• The child’s set of pending signals is initially empty.

• The child does not inherit semaphore adjustments from its parent.

• The child does not inherit process-associated record locks from its parent.

• The child does not inherit timers from its parent.

• The child does not inherit outstanding asynchronous I/O operations from
its parent, nor does it inherit any asynchronous I/O contexts from its
parent.

Figure-1

States between a parent process and a child process

• When a parent process in user mode is in the running state and calling
fork(), the parent process is trapped into kernel mode and the OS takes
over the work of creating a process. After that, the parent process will get
back to the user mode and will be in the ready state waiting for its turn
to run.

• The newly created process will be in the new state. OS will do process
initialization and resource allocation.

• After that, the child process is in the ready state and is placed in a queue
of processes that are ready to run. The CPU scheduler will later select a
process from this queue to run.

2



• A parent process can wait for the child process to terminate before proceed-
ing. If the parent process uses wait(), then the child process termination
status and execution times are returned to the parent.

• When a child process completes but the parent process has not yet collected
the exit status of the child, then the child process is a Zombie process. A
Zombie process is a process that has completed its execution but still has
an entry in the process table. Using wait() in the parent process could
help us avoid leaving the child process in the Zombie state.

• A parent process can also run concurrently with the child, continuing to
process without waiting. If the parent process terminates before its child
processes, then the child processes become orphaned. In Unix, the init
process (such as systemd) typically takes on the role of reaping orphaned
child processes.

Practical use case

Parent Process Child Process
Shell Command Execution
Browser Tabs and Extensions

• In a shell environment, if the command is a built-in command known by
the shell (echo, break, exit, test, and so forth), it is executed internally
without creating a new process. If the command is not a built-in, the shell
treats it as an executable file. The parent process, the shell, waits until
the child either completes execution or dies, and then it returns to read
the next command.

• Web browsers like Google Chrome use multiple processes to enhance
stability and security. Each tab, plugin, and extension typically runs in its
own process.

Preferences

1. https://man7.org/linux/man-pages/man2/fork.2.html (2023-11-16)

2. ANDREW, S. Tanenbaum; HERBERT, Bos. Modern operating systems.
Pearson Education, 2015.

3. ARPACI-DUSSEAU, Remzi H.; ARPACI-DUSSEAU, Andrea C. Operating
systems: Three easy pieces. Arpaci-Dusseau Books, LLC, 2018.

4. LEI, Tony; LAM, Alfred. An Analysis on Google Chrome. 2010.

5. ROSEN, Kenneth H., et al. UNIX: the complete reference. McGraw-Hill,
Inc., 2006.

3



6. SILBERSCHATZ, Abraham; GALVIN, Peter B.; GAGNE, Greg. Operat-
ing System Concepts, 9th ed. John Wiley & Sons, 2012.

7. Figure-1 source: https://sumeetjainengineer.wordpress.com/tag/processes/
(2023-11-16)

4


	Homework 19 - Fork()
	Definition
	What it does in the OS
	States between a parent process and a child process
	Practical use case
	Preferences


